UNLIMITED DISTRIBUTION @

l* National Defence Défense nationale

Research and Bureau de recherche
Development Branch et développement

TECHNICAL MEMORANDUM 92/209
March 1992

AD-A249 g
A lllll:!lhl!llf llu“rhilh

CROSS SECTIONAL CONSTANTS AND
STRESS DISTRIBUTIONS OF
THIN-WALLED SECTIONS

Thomas S.Z. Hu

DTIC

-...E'CTE
e |

. \_____“_,_.,-,,.

Defence e Centre de
Sea) (et
EQ
Atlantic ‘!Qg,x/; Atlantique
} 92-12794
Canada \\Il‘il\l\\l?ll\i\lsl\ll\t\li\l\ﬁ\\\\l‘\\l‘
ta 205

Q%




NLIMIT l IBUTION

l* National Defence Défense nationale

Research and Bureau de recherche
Development Branch et développement

CROSS SECTIONAL CONSTANTS AND
STRESS DISTRIBUTIONS OF
THIN-WALLED SECTIONS

Thomas S.Z. Hu

March 1992

Approved by R.T. Schmitke Distribution Approved by

Director / Technology Division
B

Director / Technology Division

TECHNICAL MEMORANDUM 92/209

Defence Mﬁfv Centre de
Research g 7. Recherches pour la
Establishment ‘*\ y .- Défense

Atlantic (@f Atlantique

Canadi




Abstract

The equivalent beam model is widely used for predicting strength and vibration
of a ship hull in a preliminary analysis. It can also be used for checking results in a large
finite element model and for parametric studies of ship behaviour. This method treats a
ship hull as a series of prismatic segments connected together. Each segment has iis
sectional properties, real and virtual masses. The program SCRAP was developed at
Defence Research Estaulishment Atlantic for calculation of cross sectional constants and
estimation of mass properties. It prepares input data files for the finite element programs
VAST and TORSON and interprets the analytical results. SCRAP can be only used for
some specific sections at the present time. For arbitrarily oriented sections it may give an
incorrect shear centre and warping constant and thus the wrong stress distributions.

This report presents the mathematical derivations of the equations used for the
calculation of cross sectional constants and stress distributions of thin-walled sections. As
an improvement over the current SCRAP program, these equations are applicable to any
shape of cross section, both open and closed, and are independent of the orientation of
the cross section. A computer-oriented step-by-step procedure based on these equations
is outlined. Several examples are also presented to verify the procedure.

Résumé

Dans une analyse préliminaire, le modele de poutre équivalente est largement
utilisé€ pour la prévision de la résistance et des vibrations d’une coque de navire. 11 peut
aussi €tre utilisé pour vérifier les résultats dans un modele a éléments finis de grande
dimension et dans des études paramétriques sur la tenue des navires. Dans la présente
méthode, on considére qu’une coque de navire est constituée d’une série de segments
prismatiques relié€s ensemble. Chaque segment posseéde ses propriét€s de section, sa masse
réelle et sa masse virtuelle. Le programme SCRAP a ét€ écrit au Centre de recherches
pour la défense (Atlantique) en vue du calcul des constantes de section transversale et de
Pestimation des propriétés de masse. Il prépare les fichiers d’entrée pour les programmes
a éléments finis VAST et TORSON et il interpréte les résultats analytiques. SCRAP ne
peut pour le moment €tre utilisé que pour certaines sections particulieres. Dans le cas de
sections d’orientation arbitraire, il peut donner une constante de centre de cisaillement et
de gauchissement erronée et, par conséquent, des distributions de contraintes erronées.

Ce rapport montre comment on a déduit les équations mathématiques utilisées pour
calculer les constantes de section transversale et établir les distributions de contraintes des
sections a pario mince. Ces équations constituent un perfectionnement par rapport au
programme SCRAP actuel : elles peuvent étre appliquées a toutes les formes de section
transversale, ouvertes et fermées, et elles sont indépendantes de 1’orientation de la section

transeversale. On décrit une méthode pas @ pas mécanisée basée sur ces €quations.
Plusieure exemples permettant de vérifier la méthode sont aussi présentés.
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Notation

M, M

x*

M

w

Q. Q
Qs Gor o
Q> Qu
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S.S.,S
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area of closed section

Cross section area

end of curvilinear coordinate

width of segment i

Young’s modulus

function

shear modulus

moments of inertia along x and y axes respectively
product of inertia

warping constant

St-Venant torsional constant

segment number

length of segment

axial force

moment along x and y axes respectively
bimoment

shear forces along x and y axes respectively
transverse, St-Venant and warping shear flows
shear flows at beginnings of integration

shear flows of open sections

static moments of a portion of cross section in x, y and w coordinates
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T

s

T,

curvilinear coordinate along wall profile
St-Venant, warping torsion moments
thickness of wall

centroid in X direction

centre of rotation in x direction
centroid in Y direction

centre of rotation in y direction
displacement in z direction

angle between tangent to s and 0-x axis
shear strain

displacement in x direction
displacement in y direction

bending and warping normal stresses

displacement in s axis

quantities for calculating sectoriai coordinate

sectorial coordinate

angle of rotation
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1. Introduction

The equivalent beam model is a simplified method widely used for predicting
strength and vibration of a ship hull in preliminary design. It can @lso be used for
parametric studies and for checking results in a large finite element model. The
equivalent beam method treats a ship hull as a series of prismatic segments connected
together. Each segment has its own sectional properties, real and virtual masses. By
utilizing different types of beam elements and numerical methods, stress distributions due
to various loadings and natural frequencies of the structures can be obtained.

The various beam elements in the finite element method are derived from different
assumptions, with or without shear deformation and/or longitudinal warping. For a ship
with large openings, such as a container ship, the lowest natural frequency of coupled
horizontal-torsional modes may be close to the lowest natural frequency of flexural
vibration modes, and the horizontal propeller forces may generate large torsional moment.
The shear deformation of the cross section of a ship hull also can be significant
depending on the depth to length ratio of the ship. Thus, the required sectional properties
for the subsequent numerical analysis are not only the moments of inertia and centroid,
but also the shear centre and torsion and warping constants.

The program SCRAP was developed by the Structural Mechanics Group of
Defence Research Establishment Atlantic (DREA) for calculating different sectional
constants, mass properties, preparing input data files for the finite element programs
VAST (1] and TORSON (2] and interpreting the analytical results. The required sectional
properties for the general beam element in the finite element program VAST are the
moments of inertia, the torsion constant and the shear centre. An additional sectional
constant needed for the program TORSON is the warping constant. SCRAP is
documented in References 3 to 6.

The program SCRAP is efficient and user friendly but can only be used for
symmetric sections at the prescnt time. It may give the incorrect shear centre and warping
constant for an arbitrarily oriented section and, consequently, invalid results for the
equivalent beam analyses. Because this program is unable to provide the correct shear
centre for arbitrarily oriented sections, the distribution of transverse shear flows is also
incorrect.

The available literature on the subject of calculating sectional constants and stress
distributions of arbitrarily oriented thin-walled sections tends to be incomplete and
problem specific [7,8]. This report presents complete mathematical derivations of the
equations used for the calculation of the cross sectional constants and stress distributions
of thin-walled sections. These equations can be used for any shape of cross section, both
open and closed, and are independent of the orientation of the cross section. As well, a
computer oriented step-by-step procedure based on these equations is outlined. Several
examples are also given in the final section of this report to verify this procedure.




2. Derivations

Geometric discontinuities exist at large hatch openings of ship hulls and on the
locations where open and closed sections mix. They create relative restraints and cause
displacement incompatibilities between segments under applied torsion loading, thus
generating secondary stresses in addition to the primary shear stresses and altering the
overall stress distribution. This section presents the mathematical derivations of torsion
induced displacements and stresses of thin-walled sections.

Several essential assumptions made herein for all of the derivations follow:

1. The beam segment is a prismatic thin-walled section. The term "thin-walled section”
indicates that the thickness of the wall ’t’ is small in comparison with the total width of
the cross section but it has sufficient thickness so that local buckling is not a problem.
Thus, the shear stresses can be assumed constant through the thickness of the wall but
may vary along the cross section.

2. There is no transverse deformation occurring under applied loads. The shape of the
cross section always remains unchanged.

3. The shear deformation of the cross section is caused by the primary (St-Venant) shear
stresses only. The additional shear deformation caused by the secondary (warping) shear
stresses can be neglected. For an open thin walled section, the net St-Venant shear
stresses are equal to zero through the wall thickness; consequently, there is no shear
deformation.

The sign conventions and coordinate systems of a thin-walled cross section
subjected to bending and torsion for the following theoretical development are illustrated
in Fig. 1. Two coordinate systems are defined; a Cartesian coordinate system which has
x, y and z axes through the centre of gravity of the cross section and a curvilinear
coordinate system, s, which coincides with centreline of the wall of the cross section and
is bounded with boundaries s=0 and s=b. The Cartesian coordinate system has
displacements &, 1 and w along the x, y and z axes and a rotation ¢ around the z axis.
The curvilinear coordinate system, on the other hand, has a displacement v along the s
axis. The positive directions of forces and displacements are indicated by arrow heads.
One should keep in mind that the sign conventions used here are different from
Timoshenko’s definitions [9].

2.1 General Considerations
A small wall element cut from the thin wall beam as shown in Fig. 1 has an angle

o between the s and x axes. The displacements between two coordinate systems can be
related to each other through geometric orientation as:




Geometric relation:

v kX om . 99
= .§.z..cosa + 3Z.smoz +hp .

de dv=dnsina
— “an

‘ dv=d&cosa

M, dv=h,¢’
"(l if M,
Equilibrium: Q, {Q

T, ' N
dq do ¢
% a0
ds Compatibility:
A:is dz ow . ov
@z s oz !
q jt
(q+ _Sds)dz . .
(o + a_cdz)tds dv
dz

Note: o is the angle between the 0-x axis and the positive tangential direction
of coordinate, s, measured counterclockwise

Figure 1: Sign conventions and coordinate systems




8_1) - ﬁcosa + a_nsina +hpa(p (1)

0z oz 0z oz

in which h, is the distance between the tangent of a wall element to the centre of rotation
’p’ of the cross section (it can be proved that the centre of rotation is also the shear centre
of the cross section). The non-dependencies of & and h, from the z axis in this equation
indicate that the beam is prismatic.

The equilibrium equations between internal resultants and external forces of a
Cross section are:

i GdA, - N (@) fands - T, @
[oxdA, =M, ®);  [qeosods = Q, (@ 2)
fovaa, - M @ [asinods - Q
where A_ is the cross section area. For a small wall element as shown in Fig. 1, the
equilibrium equation in the longitudinal direction of the beam is

9,90 _ g 3)
ds 0z

where q and t are shear flow and wall thickness respectively.

The compatibility relation between displacement v along the s axis and w along
the z axis can be obtained through shear strain 7y as:

9w v @)
ds 0oz

The constitutive relation of the material follows Hooke’s law (linear elastic
material) as

_ T (3)
'3

where 1 and G are st.ar stress and shear modulus respectively.

2.2 Pure Bending

It is convenient to describe the geometry of a cross section in an arbitrary




Cartesian coordinate system (X,Y). The arbitrary coordinate system’s origin does not
necessarily coincide with the centre of gravity of the cross section but its axes are parallel
to the cross section’s x and y axes so that dX=dx=ds coso and dY=dy=ds sina. The
transformation between the two Cartesian coordinate systems can be obtained through the
calculation of the centre of gravity as:

[ xda,
X -2 T x - X-X,
A, (6)
[ vaa,
Y, - _____"‘A .y = Y-Y,

s

By assuming no shear deformation caused by transverse shear (Bernoulli-Naviers
hypothesis), using equations (1) and (3) followed by integration along the s axis, the
longitudinal displacement w can be expressed as

w=-L'X-1n1'Y+w[(z) (7)

where w (z) is the longitudinal displacement in the origin of the system (X,Y) and is an
unknown.

Through the constitutive relation, the axial stress caused by bending can be
obtained as:
- "Eé ”X—En//Y*E\V;(Z) (8)

Gy

The term w, can be eliminated by knowing the fact that there is no axial resultant for a
beam subjected to pure bending. Letting the axial force N in equation (2a) equal zero and
using the coordinate transformation in equation (6), yields:

6, - -EE”x-En’’y )

The moments of inertia of a plane section with respect to the x and y axes are defined
by the integrals:

Y
H A&

L-[xiaas 1= [ydA; L - [ xvda, (10)




The moment curvature relationships of a prismatic beam are expressed as:
77 2 s/
-E§ | X dA - En ’-I/;,xydAs - M

(11)
-E5 [ xydA,-En” [ ydA, - M,

By substituting these quantities into equation (9), the axial stress can be rewritten as:

G X - IyX ;)Ixyny+ Ixy—DIxyxMy (12)

where D =11 -1 2

The integration of equation (2) along the curvilinear coordinate leads to

9,52 = @ - [ 2 tds (13)
J oz

where the constant q,” represents the shear flow at the beginning of the integration. The
shear flow, g, vanishes for an open section with the integration starting at a free edge
(shear flow equals zero at this point) and is unknown for a closed section in which the
shear flow of the starting integration point usually is non-zero.

Introducing two integrals which represent static moments of a portion of the cross
section as:

S, - }xtds; S, - sfylds (14)

o

and substituting equation (12) into equation (13), one can obtain

1S,-L,S, LS - IxnyQ 15)
D » T y

-

qb = qb-

By aefining two quantities

ou

- IS -1,S, ou

qu - —_— by

D

C1S,-LS,
D

(16)




and with the fact that q, is a linear combination of the shear forces Q, and Q,, equation
(15) can be written as:
S,-1

I S IS-1.S
xyoy *_ TxTy Txyox
—p W G a”n

= (@ * Q0Q, * (@i + G5,)Q,

q, = (ql:x_

where superscript "u" can be interpreted as shear flow caused by a unit of shear force.

Since there is no twisting, the unit angle of twist is zero which indicates that

b
Sogs - 0 (18)
t

(o]

Two unknown quantities q,, * and q,," can be obtained as

b ou b ou
q:x ds Eids
*y (o] *U [V} t
Qe = =3 G = - (19)
ds j‘ds
[ t [] t

They are equal to zero for an open section. On the other hand, for a multi-cell section
with n compartments these equations have to be satisfied for each cell and thus result in
n simultaneous linear equations.

The moments of inertia in equations (12) and (15). based on the assumption of a
thin walled section, can be simplified by using integration by parts as:

I, - J;xszs - bfx%ds - xSxIZ—bexdx 20)

Because the first term on the right hand side of the equation vanishes (according to
equation (6), x is normalized so S,(0) and S,(b) equal zero), the moments of inertia can
be expressed as

b
1, - —T[‘Sxdx L= -fsdy; 1 - -bfsxdy - -bfs)dx @1




2.3 Twisting

There are no lateral displacements, & and m, for a beam subjected only to pure
twisting around its centre of rotation. Thus, equation (3) can be reduced to
ov
— = ¢ ’h (22)
oz ® M

According to the basic assumption that the shear deformation of the cross section is only
caused by the St-Venant shear stresses, with equation (4), yields

aW ’ qs
— = -h e
x TG (23)
P J p
- -h
AN 2At(p

where A is the area of a closed section surrounded by the thin walls. The second term in
this equation vanishes for an open section.

By defining dQ, = h,ds and dQ2, = J/(2At)ds, integrating equation (23) along the
$ axis, gives

w=-0'Q +¢ ’Qz+w0(z) (24)

The warping normal stresses can be obtained by using Hooke’s law derived as

o, - -E¢ “Q +E¢p “Q,+Ew,(2) (25)

(V]

Letting w,'/¢”"=Q,, and following Kollbrunner’s [7] definition with a normalized sectorial
coordinate, will lead to

©-0,-Q,-Q, (26)

allowing the axial stress in equation (25) to be simplified as
6 = -Ep "o (27)
The quantity Q, in equation (26) can be evaluated using the fact that the resultant axial

force acting on the cross section is equal to zero. Letting N in equation (2a) equal to zero
and integrating warping normal stresses along the s axis yields




Q =2 (28)

The warping shear flow can be obtained from equation (3) as

q, - Eo ”’fcot dS+q, (29)

where q, represents the shear flow at the beginning of the integration point.

By introducing a sectorial static moment of a cut-off portion of the cross section,

S, - f  tds (30)

the warping shear flow can be expressed as

177

q, = Ep 'S, +Qy (31)
= G *qq

The warping torsional moment with respect to the point p can be calculated

b b 30 b 20 , 32)
T, = fqm hds = fqm wds + fqm _BTdS

The assumption (3) that the longitudinal shear strain is only caused by the St-Venant
shear flow, and that warping shear flow has no contribution to the shear deformation,
indicates that

bfymds . bf_q(_;“?ds - 0 (33)




Thus the last term in equation (32) is equal to zero

oA, b g beg, T
- —ds = |22 _tds=0 (34)
J% ds o ofq“’2AtS ofGt(p’s

Using integration by parts of the first term in equation (32), the warping torsional moment
can be obtained as

oq,

b
b
T, - qo |°—8f(o Tas—ds

(35)
b 36 b .
- +of az(x)tds = -Eo¢ J.m tds
or
Tm - —E(p ///Im (36)
where I is the warping constant
b
1 - fouds a7
The warping shear flow can be expressed as
T, S .
= —__> +

w

= Qg *+qu)T,

The constant shear flow q,™ caused by a unit warping moment can be obtained according
to assumption (3) or equation (33) as

b ou
g“’_ds
qr - -2 (39)
ds

10




Defining M_'=T,, the warping normal stress can be expressed as

c = w (40)

The derivation of the above equations requires that the centre of rotation is known
in advance and that all the nodal coordinates refer to this point. Using geometric
relationships leads to

h,ds = h.ds-x sina ds+ycosa ds (41)

Letting dQ, = h_ ds and using the fact that dy=sina ds and dx=cos ds, the normalized
sectorial coordinate, @, can be expressed as

o = Qc—xpy+ypx—Qz—Qo (42)

The centre of rotation can be evaluated by using the fact that there are no flexural
moments under pure twisting. Letting equations (2b) and (2c) equal zero gives

b

fo xtds ~ 0, ch ytds = 0

b b (43)
or f(oxtds = (; fm ytds = O
Introducing equation (42) into (43), gives
b b b b
f(o Xtds - xpfyxtds + ydfxztds - fQ xtds = 0
° 0 ° ° 44)
b b b b
fu) yids - xpfy’tds + ypfxytds - fQ yds = 0
Defining
b b
Ixﬂc = JQ Xtds; Im’ - f.Q ,Xtds
o o (45)

b b
Lo - fQ cytds; Iyﬂ’ - fQ ,ytds

11




and introducing these quantities into equation (44) and solving two simultaneous linear
equations, the centre of twisting can be obtained as

- (Iyﬂ c_ Iyﬂ ,)Ix - (Ixﬂ c_ Ixﬂ ,)Ixy
’ D (46)
(g S I, z)Iy - (Iyn . Iyn ,)Ixy

The quantities in equation (45) can also be simplified by following the same procedure
as equation (20), using integration by parts as

b b

Iy - - ;f 54Q ;I - - bf 5.dQ o
Lo, - -[S4Q, 1, - -[sda,

3. Numerical Procedure

The thin-walled section is assumed to be composed of a number of narrow
rectangular segments. Each segment is numbered consecutively, starts with node i and
ends with node j. The coordinates x, y and o for each segment are distributed linearly
along its length; therefore, the static moments §,, S, and S, vary parabolically along each
eiement. A three points rule of Newton-Cotes integration can be used to obtain an exact
solution for the cross sectional constants I,, I, I, and I,. The integration of function f(r)
from r=a to r=b can be evaluated as

b
[idr - 2Rttty an 1) 48)

With the equations derived in the previous section, the step-by-step procedure to evaluate
the cross sectional constants is as follows:

(1) Input nodal coordinates (X,,Y;) and (X Y;) of each segment k with respect to an
arbitrary coordinate system (X,Y), its thickness t, and connectivity with other elements.

(2) Calculate coordinates of mid-point, length and area of each segment k
3) Obtain centre of gravity of the cross section as




X‘+X.

X, = 3 L AX, = Xi-XJ
Yi+Yj
X, - 3 ; AY, - Yi—Yj

L, - {AX2+AY?; A - Lg

and the nodal and mid-point coordinate of each segment (x,y)), (x;y;) and (x,.y,) with

respect to the new origin (X, Y,) as
x=X-X., y=Y-Y,

4) Calculate the static moments S, and S, of a cut of portion of the cross section for
points i, j and k of each segment as

A X
AS. - _L;_ﬁ; S, = S_+AS,
A
as. - MOV o g las
y 4 y y y

5) Obtain the moments of inertia of the cross section as

k. AX kK AY,
I - 2_6 [S ()+4S (k)+S ()]; -5 _6 £[S,(i)+4S (k)+ S ()]
n=1 n-~1
K AY, kAX,
I, = > —LIS,()+48,0+S,()): 1, = > —15,()+48,(0+3,0)]
n=1 ne1l

(6)  Calculate AQ, as
AQ = x AY, -y, AX,

@) Evaluate AQ2,, as

Lk
AQ, = 2KT'AX

13




For an open section, this term is equal to zero. For a multi-cell closed section with n
cells, K is an n x n squared matrix as described in Appendix (A) and A is an n x 1
matrix.

8 Evaluate Lo, Lq., Lig, and L g, as

LAQ )
Ixﬂc = £ T[S‘(1)+4Sx(k)*sx(])], I

1

AQ

2

1

[S, i)+ 4S,(k)+ S, (j)]

ySlc
k

k
AQ * AQ
1., - 2 TE[Sx(i)+4Sx(k)+S,(j)]; Lo, = > 6"[sy(i)+4s,(k)+s,(i)1

1 n-1

and centre of rotation of the cross section (xp,yp] as

X = (Iyﬂ c - Iyﬂ ,)lx - (Ixﬂ C- IxQ ,)Ixy . y = - (IxQ c_ Ixﬂ ,)Iy B (IyQ c_ IyQ Z)Ix_v
P ’ P

D

) Calculate AQ,, as
AQ = AQ a” XYty AX,

(10) Calculate

AQ lk—QZR) - AQ u_AQ 2%
(Qn'Qz). = (QI+QZ)|-1+A(QI+Q2)

k A
2 (Q+Q ) +(Q +Q )]
Q - n-1 2

° k

(11)  Calculate normalized sectorial coordinate of nodal and mid-point of each segment

0,~Q2-Q.-Q

(12)  Calculate S, of a cut-off portion for each segment as

Alm +o
AS - _"_%44; S, = S, +AS,

w

14




(13)  Obtain the warping constant I as

L AQ -AQ,
- > — L ___2[S,(1)+4S,_ (K)+S, ()]

n-1

The calculations of normal stresses are straight forward and do not need to be
discussed. Only the procedure for calculating the transverse and the warping shear stresses

are presented here:

(14)  Calculate q,,™ and q,,™ as
) IS, -L,S, LS, - LS,

. ou
Qox = —— Qry

D

(15) Calculate the total shear flow around each cell as
(qu celt [z —'[be (1) * 4q::(k) * qb‘lu(i)]]cen
@deer = 2 —lqr» (D) + 4gmy (k) + @ny ()],

and the two quantities g, ” and q,, " as

Qo) = - [KI (g )
Qp} = ~[KIM(ge) )

(16) The transverse shear flow caused by a unit shear force can be obtained as

*u

q qu * qu
qby = qby * qby

(17)  Calculate q,™ as




(18) Calculate the total shear flow around each cell as

L
@ = [ 2020+ 49700 + 4D
k

and q,™ as
Q. = -[KI(g2" o)
(19)  The warping shear flow caused by a unit shear force can be obtained as
Go = Qo *Qa

(19)  The shear flows caused by different forces now can be evaluated by multiplying
these unit shear flows with applied forces.

The above procedure can be applied on not only the closed sections but also the open
sections by letting the quantities Q, and q" equal zero.

16




4. Examples

Two examples are presented in this section in tabular form in order to demonstrate
the above procedure. The Arabic numeral in the first row of each table indicates the step
number. The results can be verified with the equilibrium condition.

Example 1: A single-cell box beam with different wall thicknesses is shown in figure
2. (a) Calculate the cross sectional constants and shear centre. (b) Calculate the transverse
shear flow caused by transverse shear forces Q,=-5.5 x 10° kN and Q,=-4.125 x 10° kN.
(c) Calculate the warping shear flow due to a unit warping moment.

[K] = 135 (A} = {15x10%}
X. =886 Y. =298.6
x, = -10.32 y, = -13.83
X, = 78.28 Y, = 312.43
I, = 56.84 x 10’
Iy = 47.49 x 1077 J =6.67 x 108
I,=1591 x10
I, = 11.71 x 10"
(qp>) = (-15372 % 107}

s
(™) = (10369 x 10°)
(q.*) = {-96.37 x 10°)

Transverse shear flow Warping shear flow
(Normalized)

Figure 2: Single-cell box beam

17




(1) 2) 3) “) 18] O] ) (8)
clem| g Jnode | X [ ax | fa|xa] = |asc] s heant] 1 | e o | 80 | e | ke )
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2| 10 310{ -180}300] 3} 9.3} 2214 9.58| $6.13}-101.03} 134.71] 74988} 66666| 42.09] 37.42
2.65
3| 220 131.4 12.23
1.57
3] 10 20| -400| 500} 10| 2| -686 13.8] 72.8] -291.2] -218.4] 57140] 55556| 41.6| 40.44
-8.43
4] -180 -268.6 537
-3.35
4] 20 90} 180|300 3] -27|-1786 2.02] 13.46] 24211 -32.28] 75012] 66667 10.09] 897
20
| 1 0 -88.6 0
T 21 186 -341.06 -95.75 100.04 9432 v
88.6 /6 5684 1591 -16.67 -15.72
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L (1) 2) (3) ) (5) (8)
elem| 1t Inode}] Y JAY | L, | A [YVAL] ¥ ASy | Sy [1+4+1) Iy Ik | vae | Ly
] 10 | 16° 10: 100} 10 10’_ 10" | 10
1] o -298.6 0
-5.59
1] 10 150] 300 s00] 5| 7.5]-1486 -5.59]-29.79| -89.37|-119.16-27.66{ -33.1
-1.84
2| 300 14 -7.43
092
2{ 10 420} 240( 300}  3f 126} 1214 -6.51]-37.26] -89.42] 67.07{-27.94] -24.84
2.72
3l 540 241.4 -3.79
832
3l 10 390| -300] soof 10} 39| 914 453 19.68] -59.04] -78.72] 11.24| 1093
0.82
4| 240 -58.6 5.35
178
4| 20 120] -240] 300] 3] 3.6]-1786 3.57] 19.63] -47.11| 35.33] 14.72] 13.09
-3.56
{ 1l o -268.6 0
r 21 627 -284.94 -95.48 -29.64 -33.92
298.6 /6 4749 1591 494  5.65
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] @ 9) 10} an (12) (13)
elem[ 1, [node | A, | 80, [AQ,Q0) |92Q,] @ @ [aS, | S. [1+4+1| I,
10° _ 10° | 10° 100 | 10
1 0 4830 0
60.38
1] 10 5] 101450 -9661}-4830.5] -241.53 0 60.38] 241.5] -23.3
-60.38
2 9661 -4830 0
-41.21
21 10 3| 75000 8334 -5494| -164.82| -664 -41.21|-184.73| -15.4
21.29
3 -1327 3503 -19.92
87.58
3| 20 10{ 48550 -7006| - 3830 483 0 67.66] 230.83] -16.17
-87.58
4 -8333 -3503 -19.92
-21.29
4] 10 3| 75000 8333|-4166.5 -125| 664 -41.21]-184.73} -15.3¢9
4121
{ 1 0 4830 0
-1014.35 -70.26
4830 11.71




%— =
()] @ a9 a5 ae} q4] «as)] aé) anj (18)
elem| Ly Ly qu™ | 1+4+1 | q.° | q,,™ | 1+4+1 ] q," g™ |1+4+1
10* 10° 10 f10* | 10° | 10° | 107] 10°
0 1139 0 -76.8 0
11500 50f -41.9{ -3239 72] 128.1] 720.4] 51.3]-5.16)-20.64| -4.45 -607
-156.3 -424] 208 131.2 0 0.71 -308
21300 130]-228.3|-1331.1|-114.4] 213] 1227.5| 136.2] 3.52] 15.78] 4.23 67
-261.6 -147.7} 167.5 90.7) 1.7 241 438
31500 25|-238.6]-1285.2|-124.7) -153 17.2} -92.1]-5.78]-19.72] -5.07 1066
69.2 44.7] -89.1 -1659] 1.7 241 438
41300 30| -15.8] -132.4f 98.1] -69.9| -368.7}-146.7] 3.52| 15.78] 4.23 66
0 113.9 0 -76.8 0 0.71 -308
135
113.9 -76.8 0.71
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Example 2:  For a two-cell section with constant wall thicknesses as shown figure 3,
calculate (a) the cross sectional constants and shear centre, (b) the transverse shear flow
caused by Q, and Q, equal to 10° kN, and (c) the warping shear flow caused by a unit
warping moment.

v X 216.56 -56.56 24x10
+ 400 400 -56.56 216.56 24x10*
1
5 4 ! I, = 287.66 x 10’
I, = 287.66 x 10
400 I, = -53.69 x 10
2 I, = 245336 x 10'°
—T J =288 x 10°
, 400
- -5
L la) - fggn - | ~2987I0
1 x ~15887x10-3
X, = 3275 Y, = 3275

Q) - |~ 521733x10°
Y, = 262.46 " -5217.33x10°

(Normalized)
Transverse shear flow Warping shear flow

Figure 3: Multi-cell section
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I[ (1) . (2) (3) (4) — (5) (6) (7) (8)
clem ] t, loode } X | aX | L} A | XA, x ASy Sy | 1edet I Iny aQ, Al | |
10] 10 10 10° 10° 10’ 10" 10* 10
1] 800 an.s 0
9.45
1] 10 800 o] a0} 4} 32| 4ams 9.45] s67 o] 226.8| 189016 120000] 1072 68
9.45
2| 800 an.s 18.9
7.45
2{ 10 600( 400f 400 a{ 24| 2725 2635 154.1 616.4 ol 29016] 120000] 44.7] 18493
3.45
3| a0 725 298
1.45
3| 10 400 o a0} 4 16 725 3125} 1815 o] 750} 29016] 120000] s4.4f 225.03
1.45
4| 400 725 327
0.55
4| 10 200] 4oof a00] 4 8| 1725 3215] 1889 -155.6 o] 189u16} 120000] 357.1] 2267
4.55
st oo -327.5 27.6
-13.1
5] 10 0 o| soo}f 8 o] -3275 14.5 87 o -696]261968] 240000 228] 208.92
-13.1
6] o 3275 14
-5.81°
-5.1
6] 10 a00{ soo| soo] 8 32 725 -109] 4941} -395.28 0] 262032| 240000| -129.4] -118.54
109
1] 800 4725 0
3] 400 725 0
0.8
N 200 oo} ses| s.7| 114} 1278 ©0.78| -10.33 4132y 4132 0 0 0 0
-6.43
1 | 6] o -327.5 721
r 1234 -172596 322.12 662 79494
3215 L6 287.66 -53.69 -1103 1325
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(1) (2) (3) 4) (5) (8)
" T
elem ]y Inodef| Y | AY L, A, YA y ASy | Sy [ 1easl Iy ) - a (.
10 10° 100 | 10 10° 10" 10’ 10" 10"
1] o -327.5 0
4.55
1110 200| 400 400 4 8] -127.5 455f -233 932 0f 44 2796
0.55
2] a00 725 -5.1
1.45
2f10 0| o 400 4 16] 725 -365] 219 o] s87.58] -64] -2627
145
3] a0 725 22
3.45
3110 600} 400 400 4 2] 2125 125 11.5 46 0 33| 1382
7.45
4| 800 47125 8.7
9.45
a] 10 so| o 400 4 32f 4725 18.15] 1089 o] 4357] 2058] 13071
9.45
5| s 4amn.s 276
109
5110 400]{ -800 800 8 321 725 385 218 -1720 0] 563.3] 516.08
5.1
6l o0 3215 334
262
-131
6] 10 of o 800 8 of -322s 13.1] 786 o] 62862| 2059] 188.5
-13.1
1] o 3275 0
3} a00 725 0
oM
7] 10 200] 400 565 5.7 11.4] -127.5 ©0.78] 1033 41.32] 4132 (] 0
6.43
6l o 3275 7.1
======h============ —
r 377 1234 -172596 321,72 928 194.94
327.5 By 28766  -5369 -1546 -1325
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(] @) (9) (10) (11) (12) =gl
S ——
elem | 4 Inode] A, | AD, JAR,-Q) |Q-0, Q, o AS, Se 1+441 |
| 10 100 10 100 10 10"
T— 1 0 -30064 0
-126.1
110 4 215032 95032 47516] 1900.6¢f 17452 21261 1936 1839
8242
2 95032 64968 698.1
974.5
2110 4] 55032 64968| 62548} 2501.92 32484 1672.6] 93859] -6097.8
3248
3 30064 0 1997.4
-324.8
3| 10 a] 55032 64968 2420 96.8] 32484 1672.6f 93859] -6097.8
974.5
4 -34904 64968 698.1
8242
4] 10 4| 215032 95032 12612] 504.48) -17452 21261 1936 1839
126.1
s 60128 30064 0
901.9
sf 10 8| 210000 -30064| 4509 3607+ | 15032 901.9| 48102 -14462
300.6
6 30064 0 1202.5
-300.6
6] 10 8{ 210000 -30064] 15032] 1202.56] -15032 901.9| 48102| -14462
-901.9
1 30064 30064 0
3 30064 0 0
0
7] 10 57 0 o} 30064| 171365 0 "} 0 0
0
6 30064 0 0
— — ]
T 11341 -14720.2
30064 2453.36
—— —
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— e e
(1) (2) (14) (15) (16) (14) (15) (16) an (18) (19)" (20)
cem | L, | LA @ 1+4+] [ [V 1+de] Q, [ S 1ed+] '’ 9

10° 10° 10° 10° 10* 10° 10° 10° 10° KN/mm

[+] 3837 0 3537 [} 326 70.74

1] <00 40 -30.98 -188.57 439 1003] 4578 454 5.4 -189 37.74 49.79
-64 .65 -2928 5.66 41.03] -2845 415 1178

[

2 a0 40 -9245 -5403] -57.08 4571 -uM 308| -68.18] -38259] -3558 -26.28
-105.85 -7048 -12.11 23.26] -8142 -48.82 4722
-105.85 -23.25 -12.11 7049 -81.42 -48 82 47.22
3} a0 40 -1134 -683.08 -308 -2551] -16746] $57.09] -68.18] -382.59| -3s.58 2629
-123.63 -41.03 -533 29.29) -2845 4.15 -11.74
41 400 40 -128 -753.59 454 -86.98| -519.19 438 5.14 -189 3774 -49.78
-117.96 -35.36] -11796 -3536 (] 326 -70.72
S| soc 80 -78.1) 4579 449] -14842] -83288] -6582] -36.76] -196.06 416 -61.33
0S8 55.1] -121.24 -38.64] 49.02 -1642 -16.46
33y 38.68 -90 46 -55.00] -49.02 -16.42 -16.46
6} so0 80 3048 125.11 65.82 -39.86] -499 4491 -36.76] -196.06 -4.16 6133
0 3537 (] 3536 [+] 326 7073
0 -47.3 0 4.1 0 o 94.46
71 ses| ses 333 4332 439 333| 4332 439 (] 0 [ 8738
33 -17.3 30 -17.3 [ 0 3446
e —
8N 3537 326
826 826 326
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5. Concluding Remarks

This report has presented the complete mathematical derivations of the equations
used for the calculation of cross sectional constants and stress distributions of thin-walled
sections. The derivations are based on the same assumptions as Kollbrunner’s [7] open
section and extend to multi-cell closed sections. These equations can be used for any
shape of cross section, both open and closed, and are independent of the orientation of
the cross section. A numerical procedure based on these equations has been outlined and
verified with several examples. It can be easily implemented into the current SCRAP
program.

It should be noted that these equations, which are based on certain assumptions,
have some limitations. The major two are that the derivations deal only with prismatic
members, and cross sections retain their shape during deformation. Thus, the solutions of
the equivalent beam models can only be improved with increasing numbers of beam
elements, and are only valid for the unbuckled state of the ship hull’s elastic response.
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Appendix A - St-Venant Torsion

The governing differential equation of a prismatic beam subjected to St-Venant
torsion is

T, - Glo ’ (AD)

where J is torsional constant.

For an open thin-walled section which is composed of a number of thin
rectangular elements, the torsional constant can be computed as the sum of the values for
the individual element.

1=5 iy (A2)
3 11

where i is the i, element. The shear stress is linearly distributed across the thickness of
the wall with a zero average. Its maximum value of shear stress is at the wall surface and
can be written as

(t) -lst_' (A3)
$7 J

For a closed thin-walled section with multi-cells, the torsional constant is

] = 4A)T[K] YAl (A4)

where A, is the area of cell i and the entries in marrix [K] are

K, - Z.‘i:_

i=1 (AS)
k- -5 8
ij t

t

The subscript "ii" represents a summation performed along walls of cell 1 and "ij"
represents a summation performed along common walls between cell i and j.
For a single cell section, equation (A4) can be reduced to

J - 4A°2
= (A6)

59

t
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For a beam subjected to a specified torsion T,, the rate of twisting anglc ¢’ can be
obtained from equation (A1). The St-Venant shear flow (q,), in each cell then can be
found as

{q) = 2Gy ‘[K]MA

- .TJ_‘[K]-’{A} (A7




Appendix B - Open Section - Example

For a channel section with constant wall thickness as shown below, calculate the
shear centre and warping constant and verify the results.

The exact solutions of the shear centre and warping constant of a channel section with
constant wall thickness are

* - th?b?
Y /3 a1 ©
} 4
o «Poo I tb*h?_ 3bt+ 2ht
Q )
(ﬁ @ 12 6bt+ht 4,___b_T
2 ;
4 @ I t
300 d
® t=10 | l h 4—
+—~>
14—a00— — ¢
— l
ooy —
(1) (2) 3) (4)! ) (5) (6) (8)
elem | [ node ] X AX | L, L AL XA, 13 ASy § Sx J1+del 1y Txy a8, } Yxo
100} 10 10’ 10 10 107 10°
r=== - — —— P —
1 0 -151 -7.23
-1.28
1| 10 200] 400} soo] s| 10 49 -851| -4605] -1842] -138.2| 40700]-1874
373
2| a00 249 478
3.06
2| 10 310] -180] 300 3] 93] 1S9 -1.72§ -11.66] 2098| -27.98] 75060| -8.75
1.7 ’
i 220 69 0
4l 150 -331 0
-429
3| 20 90| 180] 300] 3] -27] -24 -429) -2439]  439] s8.54] 74940] -18.28
294
1 0 . -1,
L 11166 20722 -107. -45.17
151 L6 3484 1793 763
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X, = 151;

Y, =215

X, = 118.85; y, =-160.16

X, = 269.85; Y, = 54.85

l 1) (2) 3) 4) )] ®
clem] ¢ | node | Y AY L A | YA y ASy Sy | 14441 Iy Tyx Iva
10° | 10 10° 10? 10’ 10 10
:
1 0 -215 -2.86
-35
1} 10 1so] 300 sm 51 1S -65 -6.36] -3441] -103.23] -137.63] -14
025
2] 300 8S -6.11
2.18
2} 10 420| 240] 300 3} 126 205 -393] -21.83] -5239] 39.29|-16.38
3.98
3| sS40 325 0
4] 240 25 0
-0.53
3 20 120] -240] 300 3 36 -95 053] -498] 1195] -896| -3.73
-2.33
L 1 0 i 215 $=
T 11237 -143.63 -107.31 -34.11
215 -6 2395  17.88 569




—e —
m| @ O] ao] an (2 (13)
dem| ¢ | node | A, | 20, |00 Q, o |as, | s, | 1eaa L
10 10 | 10 10* 10
1 74635 29360 -244
367
11 10 s| -s9019 2256 0 123 4 2%
-367
2 15616 -29360 -244
-159
2 10 3] 75365 1599f 8140 03] -1856 -1392
403
3 90951 45640 0
4 0 -45640 0
-403
3 10 3] 74638 1120] -8140 03| 1856 -1392
159
1 14635 29360 -243
4975 -2786.36
45640 464 4
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